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A brief description of theory of level set topology optimization is given here. For
further details, the readers are referred to cited references, e.g. [OF03, WWG03,
AJT04, DKM11, DK15].

Finite Element Analysis

Area Fraction Weighted Fixed Grid Approach

A fixed grid is generated by superimposing a rectangular grid of equal sized elements
on the given structure instead of generating a mesh to fit the structure. Some of
these elements are inside of the structure (I), some are outside (O) and some are on
the boundary, namely neither-in-nor-out (NIO) elements. As O element is given a
material property significantly less than an I element and the problem becomes a
bimaterial one.

A NIO element is partially inside the structure and its material property value
is not constant nor continuous over the element. Such an element is approximated
by transforming the bimaterial element into a homogeneous isotropic element. The
material property matrix of a NIO element is computed using:

[D(NIO)e] = α [D(I)e] (1)

where [D(NIO)e] is the elemental material property of a NIO element, [D(I)e] is
for the elemental material property of inside, and α is the area ratio calculated by

α =
AI
Ae

(2)

with AI is the area inside the structure within the NIO element, and Ae is the total
area of the e-th element.

Using these values of [D(NIO)e], the stiffness matrix can be computed and a
standard finite element analysis can be applied to determine the displacements and
hence stress values of elements.
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Sensitivity Analysis

The principle of virtual work, also known as the principle of virtual displacement, is
stated that for any quasi-static and admissible virtual displacement from an equilib-
rium configuration, the increment of strain energy stored is equal to the increment
of work done by body force {b} in volume V and surface traction {t} on surface S.
It is formulated as∫

{δε}T {σ} dV =

∫
{δu}T {b} dV +

∫
{δu}T {t} dS (3)

where {δε} is the vector of strains, {δu} is the virtual displacement. In textbook
on topology optimization, the right and left hand sides are written as

a (u,v) =

∫
{δε}T {σ} dV

=

∫
{δε}T [E] {ε} dΩ =

∫
{ε (v)}T [E] {ε (u)} dΩ (4)

l (v) =

∫
{δu}T {b} dV +

∫
{δu}T {t} dS

=

∫
{v}T {b} dV +

∫
{v}T {t} dS (5)

where [E] is the constitutive matrix, v is the virtual displacement that is equivalent
to {δu}.

The Lagrange multiplier method is applied to solve the optimization problem,
where the Lagrange function is:

L (Ω, {u}, {λ}) = J (Ω, {u}) + a ({u}, {λ})− l ({λ}) (6)

in which {λ} is the adjoint variable.
The shape derivation of the objective function is obtained by differentiating

J (Ω) = L (Ω, {u}, {λ}) (7)

which, by the chain rule theorem, reduces to the partial derivative of L with respect
to Ω in the direction θ

J ′
(Ω)(θ) =

∂L
∂Ω

. (8)

Applying Lemma 4 and 5 in [AJT04] to L and substituting J for compliance, we
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obtain:

∂L
∂Ω

=
∂

∂Ω

(∫
{u}T{b}dV +

∫
{u}T{t}dS

+

∫
{ε (λ)}T [E] {ε (u)} dΩ

−
∫
{λ}T {b} dV −

∫
{λ}T {t} dS

)
=

∫
∂Ω

θ · n
(
{u}T{b}+ {ε (λ)}T [E] {ε (u)} − {λ}T {b}

)
dS

+

∫
∂Ω

θ · n
(
∂{u}T{t}

∂n
+H{u}T{t}

)
dS

−
∫
∂Ω

θ · n
(
∂{λ}T{t}

∂n
+H{λ}T{t}

)
dS (9)

In the case of a self-adjoint problem, e.g. compliance, it has {λ} = −{u}.

Level Set Method

Implicit Surfaces

In three spatial dimensions, the lower-dimensional interface is a surface that sepa-
rates R3 into separate subdomains with nonzero volumes. We consider only closed
surfaces with clearly defined interior and exterior regions.

For complicated surfaces with no analytical representation, we again need to use
a discretization. In three spatial dimensions the explicit representation can be quite
difficult to discrete. One needs to choose a number of points on the two-dimensional
surface and record their connectivity. If the exact surface and its connectivity are
known, it is simple to tile the surface with triangles whose vertices lie on the interface
and whose edges indicate connectivity. On the other hand, if connectivity is not
known, it can be quite difficult to determine.

Connectivity can change for dynamic implicit surfaces, i.e., surface that are mov-
ing around.

Signed Distance Function

A distance function d(x) is defined as

d(x) = min (|x− xI |) , ∀xI ∈ ∂Ω, (10)

implying that d(x) = 0 on the boundary where x ∈ ∂Ω. Geometrically, d may be
constructed as follows. If x ∈ ∂Ω, then d(x) = 0. Otherwise, for a given point x,
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find the point on the boundary set ∂Ω closest to x, and label this point xC . Then
d(x) = |x− xc|.

A signed distance functions is an implicit function φ with |φ (x) |= d(x) for all
x. Thus, φ (x) = d(x) = 0 for all x ∈ ∂Ω, φ (x) = −d(x) for all x ∈ Ω−, and
φ (x) = d(x) for all x ∈ Ω+. In a compact for, it is written as

φ (x) =


−d(x), ∀x ∈ Ω−

0, ∀x ∈ ∂Ω

d(x), ∀x ∈ Ω+

(11)

. Signed distance functions share all the properties of implicit functions. In addition,
there are a number of new properties that only signed distance functions possess.
For example,

|∇φ|= 1, (12)

which is known as the eikonal equation.

Hamilton Jacobi Equation

An implicitly defined boundary of the structure used during level-set method is
updated by solving pseudo time-dependent Hamilton-Jacobi equation as shown:

∂φ(x, t)

∂t
+∇φ(x, t)

dx

dt
(13)

where t is time, ∇φ(x, t) is the gradient of the level set function. To put the equation
simply, a smooth boundary Γ = x|φ(x) = 0 at given time x and space t is changed
by its normal velocity.

Being a hyperbolic partial differential equation, Hamilton-Jacobi equation is of-
ten solved numerically. In practice, an upwind scheme with high-order differentia-
tion is used with a constraint from CFL (Courant–Friedrichs–Lewy) condition is a
common practice to obtain a stable solution.

Boundary Evolution

Since the structural boundary is the zero value level set, so the boundary evolution
is implicitly achieved by the updating of level set function.

In numerical implementations, the structural boundary is discretized and ap-
proximately represented by a series of boundary points which satisfies φ(x) = 0. If
two adjacent nodes have φ-values with opposite signs then there is a boundary point
between them, which is taken to lie on the edge between the nodes, with a position
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determined by linear interpolation. The boundary points form a set of closed curves,
which provide a discrete representation of the boundary.

Update and reinitialization

The level set function in each node can be updated by the following discretized H-J
equation with the use of the up-wind differential scheme:

φi(t+ ∆t) = φi(t)− vni ∆t · |∇φ(t)|i (14)

where vni ∆t is the boundary movement obtained by solving a sublevel linearised
programme; the gradient filed is estimated for each node using the Hamilton–Jacobi
weighted essentially non-oscillatory method (HJ-WENO) described in [OF03].

Instead of updating the level set values in the whole field, we only restrict the
update to nodes within a narrow band close to the boundary. This improves the
efficiency of the method, but it means that φi is given by the signed distance to the
boundary only within the narrow band. To correct for this effect, it is common that
all of the φi variables are periodically reinitialised to be consistent with a signed
distance function, i.e., satisfying the following equation:

|∇φ|= 1 (15)

This reinitialisation uses the same fast-marching implementation used for the veloc-
ity extension.

Level Set Method Based Topology Optimization

Sequential linear programming level set topology optimization

The velocities required for the level set update are obtained by solving an optimiza-
tion problem. A generic optimization problem can be formulated using the position
of the structural boundary as the design variable:

minimize
Ω

f(Ω)

subject to gi(Ω) ≤ 0
(16)

where f(Ω) is the objective function and gi is the ith inequality constraint function.
The objective and constraint functions are linearized about the design variables at
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each kth iteration using a first-order Taylor expansion:

minimize
∆Ωk

∂f

∂Ωk
·∆Ωk

subject to
∂gi
∂Ωk

·∆Ωk ≤ −ḡki
(17)

where ∆Ωk is the update for the design domain Ω and ḡki is the change in the ith

constraint at iteration k.
In the level-set description of the boundary, shape derivatives provide information

about how a function changes over time with respect to a movement of the boundary
point. They usually take the form of boundary integrals [AJT04]. In this case,

∂f

∂Ω
·∆Ω = ∆t

∫
Γ

sfVndΓ, (18)

∂gi
∂Ω
·∆Ω = ∆t

∫
Γ

sgiVndΓ, (19)

where sf and sgi are the shape sensitivity functions for the objective and the ith

constraints. Discretizing the boundary at nb points, one can rewrite:

∂f

∂Ω
·∆Ω ≈

nb∑
j=1

∆tVnjsf,jlj = Cf ·Vn∆t, (20)

∂gi
∂Ω
·∆Ω ≈

nb∑
j=1

∆tVnjsgi,jlj = Cgi ·Vn∆t, (21)

where lj is the discrete length of the boundary around the boundary point j, Cf

and Cgi are vectors containing integral coefficients and Vn is the vector of normal
velocities. For a constrained problem, one can write

Vn∆t = αd, (22)

where d is the search direction for the boundary update and α > 0 is the actual
distance of the boundary movement. Then, the optimization formulation to obtain
the optimal boundary velocities can be written as:

minimize
αk,˘k

∆tCk
f ·Vk

n(αk,λk)

subject to ∆tCk
i ·Vk

n(αk,λk) ≤ −ḡki
Vk
n,min ≤ Vk

n ≤ Vk
n,max

(23)

where λ are Lagrange multipliers for each constraint function. This optimization
problem is solved at every iteration k. More details can be found in [DK15, SDK16].
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Velocity extension

Velocity function defined in previous equation is only computed at points along the
structural boundary. In order to update the level set function, velocity values at all
grid points are required. Thus, the velocity function must be extended or extrap-
olated to grid points away from the boundary. Natural velocity extension schemes
compute strain and sensitivity fields over the entire design domain. Methods that
achieve this include filling the void part with a fictitious weak material [AJT04], or
smoothing the velocity field over the discontinuity at the boundary edge [WW06].
However, the implicit function often becomes too steep or flat around the boundary,
which leads to potential stability issues. Thus, these schemes usually require fre-
quent reinitializing of the implicit function to a signed distance function to maintain
stability [AJT04, WW06].

To avoid frequent reinitialization, we employ an extension velocity technique
designed to maintain the signed distance function [AS99]. This technique ensures
the preservation of the signed distance by using the efficient fast marching method
to solve the following equation:

∇φt∇Vext = 0 (24)

where φt is a temporary signed distance implicit function and Vext is the extended
velocity function. The extended velocity function is constrained to maintain the
values already computed along the boundary.

Gradient computation

An accurate estimation of the gradient ∇φ is essential in solving Hamilton-Jacobi
equation using upwind scheme. A current gradient computation evoked internally
during level-set update utilizes 5th order Hamilton-Jacobi WENO (weighted essen-
tially non-oscillatory) method. It gives out a better approximation when compared
with ENO.

Spatial derivatives of φ and spatial stencils are obtained depending on the sign
of the velocity and the location of the node in the domain of interest. In any case,
five stencil values are obtained with same distances (v1, v2, v3, v4, v5). Based on the
smoothness of each stencil, we calculate normalized weights (w1, w2, w3) whose sum
is equal to unity.

∇φ = w1(2v1 − 7v2 + 11v3) + w2(5v3 − v2 + 2v4) + w3(2v3 + 5v4 − v5) (25)

Detailed numerical steps can be found in the reference [OF03]
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Convergence criterion

The convergence criterion is computed if the volume constraint is satisfied and is
defined using the maximum change in compliance over the previous 5 iterations:

∆Ck = max
(
|Ck − Cm|/Ck

)
, m ∈ [k − 5, k − 1] (26)

where Ck is the compliance computed at iteration k and the optimization process
is terminated if ∆Ck < 1e− 3.
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