
Tutorial for OpenLSTO v1.0:

Open Source Level Set Topology Optimization

M2DO Lab1,2

1Cardiff University
2University of California, San Diego

August 2018

Users’ Guide

Software Components

The OpenLSTO software suite is composed of two C++ based software modules that
perform a wide range of level set based structural topology optimization tasks. An
overall description of each module is included below to give perspective on the suite’s
capabilities, while more details can be found in the Developer’s Guide. M2DO_FEA
can be executed individually to perform finite element analysis, but the real power of
the suite lies in the coupling of the modules to perform complex activities, including
design optimization.

A key feature of the C++ modules is that each has been designed to sepa-
rate functionality as much as possible and to leverage the advantages of the class-
inheritance structure of the programming language. This makes OpenLSTO an ideal
platform for prototyping new numerical methods, discretization schemes, governing
equation sets, mesh perturbation algorithms, adaptive mesh refinement schemes,
parallelization schemes and etc. You simply need to define a new subclass and get
down to business. This philosophy makes OpenLSTO quickly extensible to a wide
variety of PDE analyses suited to the needs of the user and work is ongoing to in-
corporate additional features for future OpenLSTO releases. The key elements in
the OpenLSTO software suite are briefly described below for the current release,
but note that modules may be added and removed with future development.

• M2DO_FEA (finite element analysis code): solves direct, adjoint, and lin-
earized problems for the static, vibration, homogenization analysis, among
many others. It uses an area fraction fixed grid finite element method.

• M2DO_LSM (level set method code): solves interface movement problem.

Download

OpenLSTO is available for download under the Apache V. 2.0 license. Please refer
to the license page for terms and conditions.

2

https://www.apache.org/licenses/LICENSE-2.0

From Github
Using a git client you may clone into the repository. On a Linux/Unix/Mac

system with the standard git client, this can be done by executing:
git clone https://github.com/M2DOLab/OpenLSTO.git
You may also browse the code on it’s github page directly. You are able to

download the code repository as a ZIP file from the github page.
OpenLSTO has been designed with ease of installation and use in mind. This

means that, whenever possible, a conscious effort was made to develop in-house
code components rather than relying on third-party packages or libraries. In simple
cases (serial version with no external libraries), the finite element solver can be
compiled and executed with just a C++ compiler. Capabilities of OpenLSTO can
also be extended using the externally-provided software. Again, to facilitate ease
of use and to promote the open source nature, no matter when external software
is required within the OpenLSTO suite, packages that are free or open source have
been favoured. These dependencies and third-party packages are discussed below.

Command Line Terminal
In general, all OpenLSTO execution occurs via command line arguments within

a terminal. For Unix/Linux or Mac OS users, the native terminal applications are
needed.

For Windows users, downloading and installing MinGW (http://www.mingw.org/)
is a prerequisite to establish Unix/Linux-like development environment. Be sure to
check GNU Make tool to be installed. As unix-like shell commands are used during
compilation and execution of the program, additional msys tools such as mkdir is
highly recommended.

Data Visualisation
Users of OpenLSTO need a data visualization tool to post-process solution files.

The software currently supports .vtk output format natively read by ParaView.
ParaView provides full functionality for data visualization and is freely available for
Windows, Unix/Linux and Mac OS under an open source license. Some OpenLSTO
results are also output to .txt files, which can be read by a number of software
packages, e.g. Matlab. The two most typical packages used by the development
team are the following:

• ParaView

• Matlab

3

https://github.com/M2DOLab/OpenLSTO

Execution

Once downloaded and installed, OpenLSTO will be ready to run simulations and
design problems. Using simple command line syntax, users can execute the indi-
vidual C++ programs while specifying the problem parameters in the all-purpose
configuration file. For users seeking to utilize the more advanced features of the suite
(such as material microstructure design), scripts that automate more complex tasks
are available. Appropriate syntax and information for running the C++ modules
and python scripts can be found below. Windows or Mac Users: For compatibility,
the OpenMP flag -fopenmp in the second line of the makefile (starts with CFLAGS)
should be removed before compilation.

Note that compilation and execution need to be done in the specific module
folder, e.g. projects/compliance for the compliance problem.

Compile:
»make main
Run a simulation and output results:
»./bin/a.out (for Windows users, this command should be changed to start

./bin/a.out)
Clean existing compiled files:
»make clean
clean existing object files:
»make clean_obj
clean existing output files:
»make clean_results

Post-processing

OpenLSTO is capable of outputting solution files and other result files that can be
visualized in ParaView (.vtk).

At the end of each iteration (or at a a frequency specified by the user), OpenL-
STO will output several files that contain all of the necessary information for post-
processing of results, visualization and a restart. The restart files can then be used
as input to generate the visualization files. It need to be done manually.

For a typical topology optimization analysis, these files might look like the fol-
lowing:

• area.vtk or area.txt: full area fraction solution;

• level_set.vtk or level_set.txt: full signed distance solution for each itera-
tion’s topology;

4

• boundary_segment.txt: file containing values for boundary segments of
the geometry;

• history.txt: file containing the convergence history information.

Version History

• v0.1: 2017.11.01, M2DO at Cardiff University & University of California, San
Diego.

• v1.0: 2018.08.27, M2DO at Cardiff University & University of California, San
Diego.

5

Tutorial 1: Compliance Minimization
Problem for 2D

Goals

Upon completing this tutorial, the user will be familiar with performing a topol-
ogy optimization for a mean compliance minimization problem. The solution will
provide a cantilever beam and a simply supported beam, which can be compared
to solutions from other topology optimization approaches, such as solid isotropic
material with penalization (SIMP) and bi-directional evolutionary structural opti-
mization (BESO), as a validation case for OpenLSTO. Consequently, the following
capabilities of OpenLSTO will be showcased in this tutorial:

• finite element analysis of a structure using an area fraction fixed grid finite
element method;

• shape sensitivity analysis of a structure;

• implicit function, i.e., signed distance field, based description of a structure;

• topology optimization with level set method.

The intent of this tutorial is to introduce a common test case which is used
to explain how different equations can be implemented in OpenLSTO. We also
introduce some details on the numerics and illustrates their changes on final solution.

Resources

The resources for this tutorial can be found in the folder compliance in projects
directory.

6

Tutorial

The following tutorial will walk you through the steps required to solve a compli-
ance minimization problem using OpenLSTO. It is assumed that you have already
obtained the OpenLSTO code. If not, please refer to Download.

Nomenclature
Dirichlet boundary conditions: the value of the function on a surface
Neumann boundary conditions: the normal derivative of the function on a surface

Euclidean distance: the straight-line distance between two points in
Euclidean space

Signed distance function: the distance of a given point x from the boundary of Ω,
with the sign determined by whether x is in Ω or not

Level set function: a set where the function, e.g. signed distance, takes on
a given constant value c, e.g., 0 for boundary of a shape

CFL condition: the Courant–Friedrichs–Lewy (CFL) condition is a necessary
condition for convergence while solving certain partial
differential equations (usually hyperbolic PDEs)
numerically by the method of finite differences

Marching square algorithm: a computer graphics algorithm that generates contours
for a two-dimensional scalar field

Upwind finite difference: a class of numerical discretization methods using
an adaptive or solution-sensitive finite difference stencil
to numerically simulate the direction of propagation of
information for solving hyperbolic partial differential
equations

Background

This example uses a 2D cantilever beam under a point load with configuration shown
in Figure 1. It is meant to be an illustration for a structure under static load.

Main Program

The program is divided into five parts:

1. settings for the finite element analysis;

2. settings for the sensitivity analysis;

7

Figure 1: Configuration of the cantilever beam.

3. settings for the level set method;

4. settings for the optimization;

5. the level set topology optimization loop.

Details for each part are explained below.

Settings for the Finite Element Analysis

The optimization domain is assumed to be rectangular and split into square finite
elements with unit width and height. Note that other element sizes are also allowed,
but special care should be taken to establish mapping between finite element mesh
and level set mesh. There are nelx elements along the horizontal direction and nely

elements along the vertical direction, as Figure 2 shows.
First, a finite element model is created through the following lines:

1 /*
2 FEA Mesh:
3 */
4
5 // FEA mesh object for 2D analysis:
6 FEA::Mesh fea_mesh (2) ;
7
8 // Number of elements in x and y directions:
9 const unsigned int nelx = 160, nely = 80 ;

10
11 // fea_box contains the (x,y) coordinates of 4 corner points of rectangle

containing the mesh:
12 MatrixXd fea_box (4,2);
13
14 fea_box << 0.0, 0.0,
15 nelx , 0.0,
16 nelx , nely ,
17 0.0, nely;
18
19 // Element Gauss integration order:

8

20 int element_order = 2 ;
21
22 // Create structured mesh and assign degrees of freedom:
23 fea_mesh.MeshSolidHyperRectangle ({nelx , nely}, fea_box , element_order , false) ;
24 fea_mesh.is_structured = true ;
25 fea_mesh.AssignDof () ;

A two dimensional FEA::Mesh class, which will hold information pertaining to
nodes, elements and degrees of freedom, is instantiated. A rectangular design domain
is defined by its four corner points in the fea_box parameter, and the structured
mesh is generated using the MeshSolidHyperRectangle function. The degrees of
freedom are assigned using AssignDof.

Material properties such as Young’s modulus, Poisson’s ratio and density are
added to the mesh as follows:

1 double E = 1.0 ; // Young’s Modulus
2 double nu = 0.3 ; // Poisson ’s ratio
3 double rho = 1.0 ; // Density

An instance of the FEA::StationaryStudy class is created, which is capable
of solving problems of the form [K]{u} = {f}. Dirichlet boundary conditions are
defined in order to fix the degrees of freedom on the left-most edge. A point load
is defined on the mid right-most edge. Since in this example the load vector {f}
is design-independent, the point load is built using the AssembleF function. These
are realized in the following lines:

1 /*
2 Next we specify that we will undertake a stationary study , which takes the
3 form [K]{u} = {f}:
4 */
5
6 FEA:: StationaryStudy fea_study (fea_mesh) ;
7
8 /*
9 Define homogeneous Dirichlet boundary condition (fixed nodes) and add to study:

10 */
11
12 // Select dof using a box centered at coord of size tol:
13 vector <double > coord = {0.0, 0.0}, tol = {1e-12, 1e10} ;
14 vector <int > fixed_nodes = fea_mesh.GetNodesByCoordinates (coord , tol) ;
15 vector <int > fixed_dof = fea_mesh.dof (fixed_nodes) ;
16
17 // Add boundary conditions to study:
18 vector <double > amplitude (fixed_dof.size() ,0.0) ; // Values equal to zero.
19 fea_study.AddBoundaryConditions (FEA:: DirichletBoundaryConditions (fixed_dof ,

amplitude , fea_mesh.n_dof)) ;
20
21 /*
22 Define a point load of (0, -0.5) at the point (nelx , 0.5* nely) and add to study:
23 */
24
25 Select dof using a box centered at coord of size tol:
26 coord = {1.0* nelx , 0.5* nely}, tol = {1e-12, 1e-12} ;
27 vector <int > load_node = fea_mesh.GetNodesByCoordinates (coord , tol) ;
28 vector <int > load_dof = fea_mesh.dof (load_node) ;

9

Figure 2: Overlapped FEA and LSM meshes of the design domain.

29
30 vector <double > load_val (load_node.size() * 2) ;
31 for (int i = 0 ; i < load_node.size() ; ++i) {
32 load_val [2*i] = 0.00 ; // load component in x direction.
33 load_val [2*i+1] = -0.5 ; // load component in y direction.
34 }
35
36 // Add point load to study and assemble load vector {f}:
37 FEA:: PointValues point_load (load_dof , load_val) ;
38 fea_study.AssembleF (point_load , false) ;

Lastly, the FEA solver settings (initial solution guess and convergence tolerance)
are defined as:

1 // Initialise guess solution for CG:
2 vector <double > u_guess (fea_mesh.n_dof , 0.0) ;
3
4 // Convergence tolerance:
5 double cg_tolerence = 1.0e-6 ;

Settings for the Sensitivity Analysis

The FEA::SensitivityAnalysis class is used to compute the sensitivity of com-
pliance with respect to movements of the structural boundary. In this example, it
suffices to declare one instance, which is done as:

1 FEA:: SensitivityAnalysis sens (fea_study) ;

Settings for the Level Set Method

Basic parameters width related to level set method are defined first. They include
move_limit defining that the level set boundary will move less than this value
between design iterations, and band_width for the width of the narrow band: the
area nearest the structural boundary which is re-initialized between iterations.

1 /*
2 Define LSM parameters:
3 */
4
5 double move_limit = 0.5 ; // Maximum displacement per iteration in units of

the mesh spacing.

10

6 double band_width = 6 ; // Width of the narrow band.
7 bool is_fixed_domain = false ; // Whether or not the domain boundary is fixed.

Several holes are then seeded in the level set function. An vector array of hole
objects are declared first, and the LSM::Hole objects are appended. A constructor
of the object is declared as (x,y,r): location of x, location of y, and a radius of the
hole.

1 /*
2 Seed initial holes:
3 In this example , we create five horizontal rows , each row alternating between
4 four and five equally spaced holes , all of radius 5 units.
5 */
6
7 vector <LSM::Hole > holes ;
8
9 // First row with five holes:

10 holes.push_back (LSM::Hole (16, 14, 5)) ;
11 holes.push_back (LSM::Hole (48, 14, 5)) ;
12 holes.push_back (LSM::Hole (80, 14, 5)) ;
13 holes.push_back (LSM::Hole (112, 14, 5)) ;
14 holes.push_back (LSM::Hole (144, 14, 5)) ;
15
16 // Second row with four holes:
17 holes.push_back (LSM::Hole (32, 27, 5)) ;
18 holes.push_back (LSM::Hole (64, 27, 5)) ;
19 holes.push_back (LSM::Hole (96, 27, 5)) ;
20 holes.push_back (LSM::Hole (128, 27, 5)) ;
21
22 // Third row with five holes:
23 holes.push_back (LSM::Hole (16, 40, 5)) ;
24 holes.push_back (LSM::Hole (48, 40, 5)) ;
25 holes.push_back (LSM::Hole (80, 40, 5)) ;
26 holes.push_back (LSM::Hole (112, 40, 5)) ;
27 holes.push_back (LSM::Hole (144, 40, 5)) ;
28
29 // Fourth row with four holes:
30 holes.push_back (LSM::Hole (32, 53, 5)) ;
31 holes.push_back (LSM::Hole (64, 53, 5)) ;
32 holes.push_back (LSM::Hole (96, 53, 5)) ;
33 holes.push_back (LSM::Hole (128, 53, 5)) ;
34
35 // Fifth row with five holes:
36 holes.push_back (LSM::Hole (16, 66, 5)) ;
37 holes.push_back (LSM::Hole (48, 66, 5)) ;
38 holes.push_back (LSM::Hole (80, 66, 5)) ;
39 holes.push_back (LSM::Hole (112, 66, 5)) ;
40 holes.push_back (LSM::Hole (144, 66, 5)) ;

Settings for the Optimization

Before solving the optimization problem, several parameters are set. max_iterations
limits the number of design iterations; max_area defines the constraint of finite el-
ements with area fractions, but it is ignored in the sensitivity analysis calculations;

11

max_diff specifies the change in objective function required to signify convergence;
lambdas are used to store weighting factors.

1 /*
2 Define parameters needed for optimization loop:
3 */
4
5 int max_iterations = 300 ; // maximum number of iterations.
6 double max_area = 0.5 ; // maximum material area.
7 double max_diff = 0.0001 ; // relative difference between iterations must be

less than this value to reach convergence.
8
9 /*

10 Lambda values for the optimiser:
11 These are reused , i.e. the solution from the current iteration is
12 used as an estimate for the next , hence we declare the vector
13 outside of the main loop.
14 */
15
16 vector <double > lambdas (2) ;

Level Set Topology Optimization Loop

An instance of an LSM::Mesh class is created and is given the same resolution as
the FEA mesh above. Hence, a level set array of (nelx+1)*(nely+1) grid points
are created. For each, the level set function is calculated as the Euclidean distance
to the nearest structural boundary using the reinitialize function. For nodes on
solid elements the sign is chosen to be negative, whereas for nodes on void elements
the sign is chosen to be positive. The boundary of the structure is to be stored in a
LSM::Boundary object.

1 /*
2 Create level set
3 */
4 // Initialise the level set mesh (same resolution as the FE mesh):
5 LSM::Mesh lsm_mesh (nelx , nely , false) ;
6
7 double mesh_area = lsm_mesh.width * lsm_mesh.height ;
8
9 // Initialise the level set object (from the hole vector):

10 LSM:: LevelSet level_set (lsm_mesh , holes , move_limit , band_width , is_fixed_domain)
;

11
12 // Reinitialise the level set to a signed distance function:
13 level_set.reinitialise () ;
14
15 // Initialise the boundary object :
16 LSM:: Boundary boundary (level_set) ;

1 /*
2 Optimization:
3 */
4
5 // Declare parameters that will change within the optimization loop:

12

6 unsigned int n_reinit = 0 ; // num cycles since signed dist
reinitialisation.

7 double time = 0 ; // running time.
8 vector <double > times , compliances , areas ; // time , compliance and area

measurements.
9 int n_iterations = 0 ; // iteration counter

10 vector <double > objective_values ; // vector to save objective history
11 double relative_difference = 1.0 ; // convergence criteria variable ,
12
13 // Initialise io object:
14 LSM:: InputOutput io ;
15
16 cout << "\nStarting compliance minimisation demo ...\n\n" ;
17
18 // Print output header:
19 printf (" --------------------------------\n") ;
20 printf ("%8s %12s %10s\n", "Iteration", "Compliance", "Area") ;
21 printf (" --------------------------------\n") ;
22
23 // Create directories for output if the don’t already exist
24 system("mkdir -p results/history");
25 system("mkdir -p results/level_set");
26 system("mkdir -p results/area_fractions");
27 system("mkdir -p results/boundary_segments");
28
29 // Remove any existing files from output directories
30 system("find ./ results -type f -name ’*.txt’ -delete");
31 system("find ./ results -type f -name ’*.vtk’ -delete");
32
33 // Setup text file:
34 ofstream history_file ;
35 history_file.open ("results/history/history.txt", ios_base ::app) ;
36 history_file << "Iteration\tCompliance\tArea\n" ;
37 history_file.close () ;
38
39
40
41 // END OF LEVEL SET TOPOLOGY OPTIMIZATION LOOP

In the next part of the program, the optimization loop that starts, and it is termi-
nated with a convergence check when satisfactory solution is obtained. Iterations are
counted by variable n_iterations and continue for a maximum of max_iterations.
Inside the optimization loop, the boundary of the structure defined by iso-contour
(2D) or surface (3D), e.g. zero level set, is discretized by finding intersection points
on mesh grid with the use of marching square algorithm. The area fraction of each
level set element is then calculated. The area fractions of elements are assigned to the
finite elements. The area fraction fixed grid finite element method is called to con-
duct finite element analysis through assembling global stiffness matrix and solving
finite element equation. The shape sensitivity of the compliance at each gauss points
in finite element is calculated. Shape sensitivities are then calculated for boundary
points by extrapolating or interpolating from the information at gauss points with
the use of the weighted least square method. The volume constraint is also imposed

13

at each iteration. By completing these necessary inputs, the Lagrangian Multiplier
method is applied to solve the optimization problem.

1 while (n_iterations < max_iterations) {
2
3 ++ n_iterations ;
4
5 // Perform boundary discretisation:
6 boundary.discretise (false , lambdas.size()) ;
7
8 // Compute element area fractions:
9 boundary.computeAreaFractions () ;

10
11 // Assign area fractions:
12 for (int i = 0 ; i < fea_mesh.solid_elements.size() ; i++) {
13
14 if (lsm_mesh.elements[i].area < 1e-3) {
15 fea_mesh.solid_elements[i]. area_fraction = 1e-3 ;
16 }
17
18 else {
19 fea_mesh.solid_elements[i]. area_fraction = lsm_mesh.elements[i].area ;
20 }
21
22 }
23
24 // Assemble stiffness matrix [K] using area fraction method:
25 fea_study.AssembleKWithAreaFractions (false) ;
26
27 // Solve equation using conjugant gradient (cg) method:
28 fea_study.SolveWithCG ();
29
30 // Compute compliance sensitivities (stress*strain) at the Gauss points:
31 sens.ComputeComplianceSensitivities (false) ;
32
33 // Compute compliance sensitivities at boundary points:
34 for (int i = 0 ; i < boundary.points.size() ; i++) {
35
36 vector <double > boundary_point (2, 0.0) ;
37 boundary_point [0] = boundary.points[i].coord.x ;
38 boundary_point [1] = boundary.points[i].coord.y ;
39
40 // Interpolate Gauss point sensitivities by least squares
41 sens.ComputeBoundarySensitivities (boundary_point);
42
43 // Assign sensitivities
44 boundary.points[i]. sensitivities [0] = -sens.boundary_sensitivities[i];
45 boundary.points[i]. sensitivities [1] = -1;
46
47 }
48
49 // clearing sens.boundarysens vector
50 sens.boundary_sensitivities.clear () ;
51
52 // Time step associated with the iteration
53 double time_step ;
54
55 // Constraint distance vector
56 vector <double > constraint_distances ;

14

57
58 // Push current distance from constraint violation into vector
59 constraint_distances.push_back (mesh_area * max_area - boundary.area) ;
60
61 /* Initialise the optimisation object
62
63 The Optimise class is a lightweight object so there is no cost for
64 reinitialising at every iteration. A smart compiler will optimise
65 this anyway , i.e. the same memory space will be reused. It is better
66 to place objects in the correct scope in order to aid readability
67 and to avoid unintended name clashes , etc.
68 */
69
70 LSM:: Optimise optimise (boundary.points , time_step , move_limit) ;
71
72 // set up required parameters
73 optimise.length_x = lsm_mesh.width ;
74 optimise.length_y = lsm_mesh.height ;
75 optimise.boundary_area = boundary.area ; // area of structure
76 optimise.mesh_area = mesh_area ; // area of the entire mesh
77 optimise.max_area = max_area ; // maximum area , i.e. area constraint
78
79 // Perform the optimisation
80 optimise.Solve_With_NewtonRaphson () ;
81
82 optimise.get_lambdas(lambdas);
83 }

With the obtaining of lambda, the level-set function is ready to be evolved. In
other words, the structural boundary can be updated to find the new structure.
The up-wind finite difference scheme is used to realize this. To do so, velocities and
gradients at each grid points are required. From solving the optimization equation,
it only enables to compute the velocities at points along the structural boundary.
In order to update the level set function, velocity values are required at all grid
nodes. The velocities to grid points from boundary points are then extended or
extrapolated by using the fast marching method. In practice, velocities are only
extended to nodes in narrow band. Similarly, the gradients are computed. Hence,
the level-set function is able to be updated.

1 // Extend boundary point velocities to all narrow band nodes
2 level_set.computeVelocities (boundary.points) ;
3
4 // Compute gradient of the signed distance function within the narrow band
5 level_set.computeGradients () ;

As the level-function is only updated for nodes in the narrow band for efficiency,
the property of signed distance is not maintained for the rest nodes. Thus, it is
important to ensure the level set function to preserve the property of signed distance
for the accuracy in solving the evolution equation. However, it may be necessary
to reinitialise the level set function too often. Currently, reinitialization at every 20
iterations is a default. The n_reinit variable is used to count iteration. When it is
reached, the reinitialization function is called to solve the Eikonal equation.

15

1 // Update the level set function
2 bool is_reinitialised = level_set.update (time_step) ;
3
4 // Reinitialise the signed distance function , if necessary
5 if (! is_reinitialised) {
6 // Reinitialise at least every 20 iterations
7 if (n_reinit == 20) {
8 level_set.reinitialise () ;
9 n_reinit = 0 ;

10 }
11
12 } else n_reinit = 0 ;
13
14 // Increment the number of steps since reinitialisation
15 n_reinit ++ ;

A convergence check may terminate the algorithm before allowed maximum itera-
tions are reached. The convergence check is not performed for the first five iterations
of the algorithm. After these first five iterations, the optimization terminates if the
previous five objective function values are all within a tolerance of 1 × 10−3 com-
paring with the current objective value and the volume is within 1 × 10−4 of the
required value max_area.

1 // Converence criterion [Dunning_11_FINAL]:
2 // find the max relative distance over the past five iterations:
3 objective_values.push_back (sens.objective) ;
4 double objective_value_k , objective_value_m ;
5
6 if (n_iterations > 5) {
7
8 objective_value_k = sens.objective ;
9 relative_difference = 0.0 ;

10
11 for (int i = 1 ; i <= 5 ; i++) {
12 objective_value_m = objective_values[n_iterations - i - 1] ;
13 relative_difference = max(relative_difference , abs((objective_value_k -

objective_value_m)/objective_value_k)) ;
14 }
15
16 }
17
18 // Check if convergence has been met:
19 if ((relative_difference < max_diff) & (area < 1.001 * max_area)) break;

Outputs

The code allows to yield different results, namely, area fraction, signed distance,
objective function value and constraint value, from the calculation, into various
formats of files. Basically, the initial and final designs and the convergence history
of objective function and constraint values are output, while the users are given the
option to output each step’s results during iterative calculations. The level set and
area fraction results at each iteration can be written out into vtk files. Boundary

16

(a) Initial design (b) Final solution

Figure 3: Initial design and optimal solution for the cantilever example.

segments can also be written to a text file.
1 // Print statistics
2 printf ("%8.1f %12.4f %10.4f\n", double(n_iterations), sens.objective , area) ;
3
4 // Print statistics to .txt file
5 history_file.open ("results/history/history.txt", ios_base ::app) ;
6 history_file << n_iterations << "\t" << sens.objective << "\t" << area << "\n" ;
7 history_file.close () ;
8
9 // Write level set and area fractions to .vtk file

10 io.saveLevelSetVTK (n_iterations , level_set , false , false , "results/level_set") ;
11 io.saveAreaFractionsVTK (n_iterations , lsm_mesh , "results/area_fractions") ;
12
13 // Write level set , area fractions , and boundary segments to .txt file:
14 io.saveBoundarySegmentsTXT (n_iterations , boundary , "results/boundary_segments") ;

Results

Default initial design is shown in the Figure 3a, where the binary image is created
based on level-set values φ. (black: φ ≥ 0 and white: φ < 0). The structure
converges to an optimal solution as given in Figure 3b after 224 iterations with
a compliance value of 14.9 by using default parameters and convergence criterion
given in the source file. The convergence history is illustrated in Figure 4.

17

Figure 4: Convergence history of compliance value and area fraction for the can-
tilever example.

18

Tutorial 2: MBB Beam

This tutorial is considered an extension of Tutorial 1, so more considerations on
the manipulation of boundary conditions and loads can be explored. Reader is
recommended to first understand the previous tutorial before advancing through
present example. Resources for this tutorial can be found in the folder compliance
in /projects directory (same considered in Tutorial 1).

OpenLSTO code can be easily modified to consider different boundary condi-
tions, loads and different initial design. A simple extension to find optimal design
for a simply supported beam or MBB beam as shown in Figure 5 is demonstrated
here. Only half of the beam needs to be solved due to the symmetry of load and
boundary conditions about the vertical axis. The right half (the shaded area in
the figure) is considered in this example. The configuration of the half beam is
set the same as the previous cantilever beam. Hence, it only needs to change the
boundary conditions and loads. The horizontal translation of the left edge of the
half beam need to be restricted and the vertical motion of lower right-hand conner
is not allowed. These boundary conditions are realized as follows:

1 // Example 2: half of simply supported beam or MBB beam
2
3 // Left boundary condition
4 vector <double > coord_left = {0.0, 0.0}, tol_left = {1e-12, 1e10} ;
5 vector <int > fixed_nodes_left = fea_mesh.GetNodesByCoordinates (coord_left ,

tol_left) ;
6 vector <int > fixed_condition_left = {0} ; // set fixed in only the x direction.
7 vector <int > fixed_dof_left = fea_mesh.dof (fixed_nodes_left ,

fixed_condition_left) ;
8
9 // Right boundary condition

10 vector <double > coord_right = {nelx , 0.0}, tol_right = {1e-12, 1e-12} ;
11 vector <int > fixed_nodes_right = fea_mesh.GetNodesByCoordinates(coord_right ,

tol_right) ;
12 vector <int > fixed_condition_right = {1} ; // set fixed in only the y direction.
13 vector <int > fixed_dof_right = fea_mesh.dof(fixed_nodes_right ,

fixed_condition_right) ;
14
15 // Combine dofs into a single vector
16 vector <int > fixed_dof ;
17 fixed_dof.reserve(fixed_dof_left.size() + fixed_dof_right.size()) ;
18 fixed_dof.insert(fixed_dof.end(), fixed_dof_left.begin (), fixed_dof_left.end()) ;
19 fixed_dof.insert(fixed_dof.end(), fixed_dof_right.begin(), fixed_dof_right.end())

;

19

Figure 5: Configuration of the MBB beam.

(a) Initial design (b) Final solution

Figure 6: Initial design and optimal solution for the MBB example.

To apply the vertical point load for the node at the upper left-hand conner, corre-
sponding node and related degree of freedom need to be selected and the magnitude
of the load is assigned.

1 // Example 2: half of simply supported beam or MBB beam
2
3 vector <double > coord = {0.0, nely}, tol = {1e-12, 1e-12} ;
4 vector <int > load_node = fea_mesh.GetNodesByCoordinates (coord , tol) ;
5 vector <int > load_condition = {1} ; // apply load in only the y direction.
6 vector <int > load_dof = fea_mesh.dof (load_node , load_condition) ;
7
8 vector <double > load_val (load_node.size()) ;
9 for (int i = 0 ; i < load_node.size() ; ++i) {

10 load_val[i] = -10.0; //load component in y direction
11 }

With these setting, the optimization for MBB can be solved. For the given initial
design as shown in Figure 6a, the structure converges to an optimal solution as given
in Figure 6b after 86 iterations with a compliance value of 7497.9 by using default
parameters and convergence criterion given in the source file. The convergence
history is illustrated in Figure 7.

20

Figure 7: Convergence history of compliance value and area fraction for the MBB
example.

21

Tutorial 3: 2D Stress Minimization

Goals

Upon completing this tutorial, the user will be familiar with performing a topol-
ogy optimization for a stress minimization problem. The solution will provide
an L-beam, which can be compared to solutions from other topology optimiza-
tion approaches, such as solid isotropic material with penalization (SIMP) and bi-
directional evolutionary structural optimization (BESO), as a validation case for
OpenLSTO.

Resources

The resources for this tutorial can be found in the folder stress_min in OpenL-
STO_v2/projects directory.

Tutorial

The following tutorial will walk you through the steps required to solve a stress
minimization problem using OpenLSTO versus a compliance minimization problem.
It is assumed that you have already obtained the OpenLSTO code and are familiar
with the compliance minimization tutorial. If not, please refer to Download.

22

Nomenclature
Dirichlet boundary conditions: the value of the function on a surface
Neumann boundary conditions: the normal derivative of the function on a surface

Euclidean distance: the straight-line distance between two points in
Euclidean space

Signed distance function: the distance of a given point x from the boundary of Ω,
with the sign determined by whether x is in Ω

Level set function: a set where the function, e.g. signed distance, takes on
a given constant value c, e.g. 0 for boundary of a shape

CFL condition: the Courant–Friedrichs–Lewy (CFL) condition is a necessary
condition for convergence while solving certain partial
differential equations (usually hyperbolic PDEs)
numerically by the method of finite differences

Marching square algorithm: a computer graphics algorithm that generates contours
for a two-dimensional scalar field

Upwind finite difference: a class of numerical discretization methods using
an adaptive or solution-sensitive finite difference stencil
to numerically simulate the direction of propagation of
information for solving hyperbolic partial differential
equations

Background

This example uses a 2D L-beam under a point load with configuration shown in
Figure 8. It represents a modern benchmark to the assessing of stress minimization
codes.

Main Program

The program is divided into five parts:

1. settings for the finite element analysis;

2. settings for the sensitivity analysis;

3. settings for the level set method;

4. settings for the optimization;

5. the level set topology optimization loop.

Details for each part are explained below.

23

Figure 8: Configuration of the L-beam.

Settings for the Finite Element Analysis (Lines 22 to 128)

The number of elements in the x and y direction are each set to 100. The material
properties are defined as follows:

1 double E = 1; // Young ’s modulus
2 double nu = 0.3; // Poisson ’s ratio
3 double rho = 1.0; // density

The Dirichlet boundary condition, i.e., clamped nodes, is defined at the top of
the beam as follows:

1 coord = {0.0, num_elem_y };
2 tol = {num_elem_x + 0.1, 0.1};
3 vector <int > fixed_nodes = fea_mesh.GetNodesByCoordinates(coord , tol);
4 // Get degrees of freedom associated with the fixed nodes
5 vector <int > fixed_dof = fea_mesh.dof(fixed_nodes);
6 // Apply magnitude of displacement at the BC
7 vector <double > amplitude(fixed_dof.size(), 0.0); // Values equal to zero

The method GetNodesByCoordinates, in this case, selects all nodes that are within
the distance 100.1 in the x-direction and 0.1 in the y-direction of the coordinate
(0.0, 100.0). fea_mesh.dof(fixed_nodes) selects the degrees of freedom asso-
ciated with the selected nodes and amplitude(fixed_dof.size(), 0.0) sets the
Dirichlet boundary condition as homogeneous.

A vertical point load is applied at the tip of the L-beam over two nodes as follows:
1 load_coord = {num_elem_x , double(num_elem_y)*2.0/5.0};
2 load_tol = {1.1, 0.1};
3 // Get vector of associated loads and degrees of freedom
4 vector <int > load_nodes = fea_mesh.GetNodesByCoordinates(load_coord , load_tol);
5 vector <int > load_dof = fea_mesh.dof(load_nodes);
6 // Assign magnitudes to the point load
7 uint num_load_nodes = load_nodes.size();
8 vector <double > load_values(load_nodes.size() * 2);
9 for (uint i = 1; i < num_load_nodes; i++) {

24

10 load_values [2*i] = 0.0; // x component
11 load_values [2*i+1] = -3.0 / double(num_load_nodes); // y component
12 }
13 FEA:: PointValues point_load(load_dof , load_values);

In this case, the 2 nodes selected by GetNodesByCoordinates are within the distance
1.1 in the x-direction and 0.1 in the y-direction of coordinate (100.0, 40.0).
As such, the selected nodes are at coordinates (99.0, 40.0) and (100.0, 40.0).
The vector load_values contains the magnitudes of the loads applied at the selected
nodes in the x and y directions. Therefore, the first two elements in the load_values
vector will correspond to the magnitude of the load applied at the first node (first
element in load_nodes) in the x and y direction respectively.

Settings for the Sensitivity Analysis (Lines 132 to 149)

Following lines are used to define sensitivity analysis parameters:
1 int sens_type = 1; // type of sensitivity being calculated. 0 is compliance , 1
2 // is stress
3 double min_area_fraction = 0.1; // minimum element area to compute sensitvity
4 double least_sq_radius = 2.0; // setting least square calculation to 2.0 grid
5 // spaces
6
7 // Initialize sensitvity analysis
8 FEA:: SensitivityAnalysis sens(fea_study);

The variable sens_type defines the type of sensitivity being implemented, which in
this case is stress. The variable least_sq_radius defines an important parameter
for the least-squares interpolation scheme used in this level set implementation and
the FEA::SensitivityAnalysis class is used to compute the sensitivity of stress
with respect to the movements of the structural boundary.

Settings for the Level Set Analysis (Lines 153 to 244)

Following lines define the boundaries of the level set mesh for the L-shape geometry.
1 // Initialize the level set mesh
2 LSM::Mesh lsm_mesh(num_elem_x , num_elem_y , is_periodic);
3 // Define vectors of points for L-beam internal edges
4 vector <LSM::Coord > vertical_edge (2), horizontal_edge (2);
5 double inner_corner = double(num_elem_x)*2.0/5.0;
6 // Define a rectangle containing the points for the vertical edge
7 vertical_edge [0] = LSM::Coord ({ inner_corner - 0.01, inner_corner - 0.01});
8 vertical_edge [1] = LSM::Coord ({ inner_corner + 0.01, num_elem_y + 0.01});
9 // Define a rectangle containing the points for the horizontal edge

10 horizontal_edge [0] = LSM:: Coord({ inner_corner - 0.01, inner_corner - 0.01});
11 horizontal_edge [1] = LSM:: Coord({ num_elem_x + 0.01, inner_corner + 0.01});
12 // Define mesh boundary
13 lsm_mesh.createMeshBoundary(vertical_edge);
14 lsm_mesh.createMeshBoundary(horizontal_edge);

25

The method createMeshBoundary creates a boundary from the points within a rect-
angular region defined by two coordinates. In this case, vertical_edge is defined
by coordinates (39.99, 39.99) and (40.01, 100.01) and horizontal_edge is
defined by coordinates (39.99, 39.99) and (100.01, 40.01).

The L-beam shape also needs to be defined for the level set itself. This is done
as follows:

1 // Initialize the level set object
2 LSM:: LevelSet level_set(lsm_mesh , holes , move_limit , band_width , is_fixed_domain)

;
3 // Kill level set nodes that aren’t in L-beam region
4 vector <LSM::Coord > kill_region (2);
5 kill_region [0] = LSM:: Coord({ inner_corner + 0.01, inner_corner + 0.01});
6 kill_region [1] = LSM:: Coord({ num_elem_x + 0.01, num_elem_y + 0.01});
7 level_set.killNodes(kill_region);
8 // Define level set boundary (L-beam inner edges)
9 level_set.createLevelSetBoundary(vertical_edge);

10 level_set.createLevelSetBoundary(horizontal_edge);

The vector kill_region defines the square region containing the level set nodes
that are outside of the L-beam. In this case, the region is defined by coordinates
(40.01, 40.01) and (100.01, 100.01). The method killNodes fixes the signed
distance value of the nodes to a small negative value. To avoid issues that can
arise from the singularity caused by point loads, it is beneficial to fix level set nodes
surrounding, and including, nodes where the load has been applied. In this case, a
total of 6 level set nodes are fixed using the following:

1 // Vector of points to fix Level set nodes (useful for load points)
2 double tol_x = 3.01, tol_y = 2.01;
3 double load_coord_x = num_elem_x , load_coord_y = double(num_elem_y)*2/5;
4 std::vector <LSM::Coord > points (2);
5 points [0] = LSM:: Coord({ load_coord_x - tol_x , load_coord_y - tol_y });
6 points [1] = LSM:: Coord({ load_coord_x + 0.01, load_coord_y + 0.01});
7 level_set.fixNodes(points);
8 points.clear ();

Settings for the Optimization (Lines 248 to 273)

For the stress case, the following optimization parameters need to be adjusted or
defined as follows:

1 double mesh_area = lsm_mesh.width * lsm_mesh.height - pow(double(lsm_mesh.width)
*3/5, 2); // LSM mesh area

2 double p_norm = 6; // p_norm value for stress

The variable p_norm is the aggregation parameter p in the p-norm function
(∫

Ω

σp
vmdΩ

) 1
p

.

Level Set Topology Optimization Loop (Lines 277 to 470)

For the stress problem analysed in this tutorial, gauss point sensitivities need to be
interpolated to the boundary points in the following way:

26

(a) Inital design (b) Final solution

Figure 9: Initial design and optimal solution for the L-beam example.

1 // Assign sensitivities to all the boundary points
2 for (int i = 0; i < boundary.points.size(); i++) {
3 // current boundary point
4 vector <double > boundary_point (2, 0.0);
5 boundary_point [0] = boundary.points[i].coord.x;
6 boundary_point [1] = boundary.points[i].coord.y;
7 // Interpolate Gauss point sensitivities by least squares
8 sens.ComputeBoundarySensitivities(boundary_point , least_sq_radius , sens_type ,

p_norm);
9 // Assign sensitvities

10 boundary.points[i]. sensitivities [0] = -sens.boundary_sensitivities[i];
11 boundary.points[i]. sensitivities [1] = -1;
12 }

Input sens_type of method ComputeBoundarySensitivities determines how (for
the compliance or stress case) the sensitivities will be interpolated to the boundary
points. Note that if sens_type is not defined the default interpolation case for
ComputeBoundarySensitivities is compliance.

Results

For a given initial design as shown in Figure 9a, the structure converges to an optimal
solution as given in Figure 9b after 177 iterations with a p-norm stress value of
3.53 and maximum von Mises stress value of 2.44 by using default parameters and
convergence criteria given in the source file. The convergence history is illustrated
in Figure 10.

27

Figure 10: Convergence history of p-norm stress, maximum von Mises stress values
and area fraction for the L-beam example.

28

Tutorial 4: Compliance Minimization
Problem using Hole Creation
Algorithm

Goals

In traditional level set method new holes are not allowed to be created naturally
and optimized solutions are dependent on initial designs. Instead of calculating
complex topological derivatives, a simple and efficient hole creation algorithm was
introduced by our group [Dunning, P. D., Alicia Kim, H. (2013). A new hole in-
sertion method for level set based structural topology optimization. International
Journal for Numerical Methods in Engineering, 93(1), 118-134]. Inspired by the hole
creation ability in 3D level set topology optimization problems, a secondary level
set function representing a pseudo third dimension in two-dimensional problems to
facilitate new hole insertion is introduced. The update of the secondary function
is connected to the primary level set function forming a meaningful link between
boundary optimization and hole creation.

For the implementations, some commands associated with the second level set
function are added while most of commands about the primary level set function
are not modified. In the following, only new added parts are introduced for concise.

Resources

The resources for this tutorial can be found in the folder hole_creation in OpenL-
STO_v2/projects directory.

Tutorial

The following tutorial will walk you through the steps required to solve a compli-
ance minimization problem with hole creation algorithm using the last OpenLSTO

29

update. It is assumed that you have already obtained this version of the code. If
not, please refer to Download.

Nomenclature
Dirichlet boundary conditions: the value of the function on a surface
Neumann boundary conditions: the normal derivative of the function on a surface

Euclidean distance: the straight-line distance between two points in
Euclidean space

Signed distance function: the distance of a given point x from the boundary of Ω,
with the sign determined by whether x is in Ω

Level set function: a set where the function, e.g. signed distance, takes on
a given constant value c, e.g. 0 for boundary of a shape

CFL condition: the Courant–Friedrichs–Lewy (CFL) condition is a necessary
condition for convergence while solving certain partial
differential equations (usually hyperbolic PDEs)
numerically by the method of finite differences

Marching square algorithm: a computer graphics algorithm that generates contours
for a two-dimensional scalar field

Upwind finite difference: a class of numerical discretization methods using
an adaptive or solution-sensitive finite difference stencil
to numerically simulate the direction of propagation of
information for solving hyperbolic partial differential
equations

Background

This example investigates a 2D cantilever beam under a point load as shown in
Figure 11. This is exact the same problem presented in Tutorial 1, but additional
explanations on the hole creation algorithm are given here.

Main Program

The program is divided into five parts:

1. settings for the finite element analysis;

2. settings for the sensitivity analysis;

3. settings for the level set method;

30

Figure 11: Configuration of the cantilever beam.

4. settings for the optimization;

5. the level set topology optimization loop.

Details for each part are explained below.

Settings for the Finite Element Analysis

The optimization domain is assumed to be rectangular and split into square finite
elements with unit width and height. Note that other element sizes are also allowed,
but special care should be taken to establish mapping between finite element mesh
and level set mesh. There are nelx elements along the horizontal direction and nely

elements along the vertical direction as shown in Figure 12.
First, a finite element model is created through the following lines:

1 /*
2 FEA Mesh:
3 */
4
5 // FEA mesh object for 2D analysis:
6 FEA::Mesh fea_mesh (2) ;
7
8 // Number of elements in x and y directions:
9 const unsigned int nelx = 160, nely = 80 ;

10
11 // fea_box contains the (x,y) coordinates of 4 corner points of rectangle

containing the mesh:
12 MatrixXd fea_box (4,2);
13
14 fea_box << 0.0, 0.0,
15 nelx , 0.0,
16 nelx , nely ,
17 0.0, nely;
18
19 // Element Gauss integration order:
20 int element_order = 2 ;
21
22 // Create structured mesh and assign degrees of freedom:

31

23 fea_mesh.MeshSolidHyperRectangle ({nelx , nely}, fea_box , element_order , false) ;
24 fea_mesh.is_structured = true ;
25 fea_mesh.AssignDof () ;

A two dimensional FEA::Mesh class, which will hold information pertaining to
nodes, elements and degrees of freedom, is instantiated. A rectangular design domain
is defined by its four corner points in the fea_box parameter, and the structured
mesh is generated using the MeshSolidHyperRectangle function. The degrees of
freedom are assigned using AssignDof.

Material properties such as Young’s modulus, Poisson’s ratio and density are
added to the mesh as follows:

1 double E = 1.0 ; // Young’s Modulus
2 double nu = 0.3 ; // Poisson ’s ratio
3 double rho = 1.0 ; // Density

An instance of the FEA::StationaryStudy class is created, which is capable
of solving problems of the form [K]{u} = {f}. Dirichlet boundary conditions are
defined in order to fix the degrees of freedom on the left-most edge. A point load
is defined on the mid right-most edge. Since in this example the load vector {f}
is design-independent, the point load is built using the AssembleF function. These
are realized in the following lines:

1 /*
2 Next we specify that we will undertake a stationary study , which takes the
3 form [K]{u} = {f}:
4 */
5
6 FEA:: StationaryStudy fea_study (fea_mesh) ;
7
8 /*
9 Define homogeneous Dirichlet boundary condition (fixed nodes) and add to study:

10 */
11
12 // Select dof using a box centered at coord of size tol:
13 vector <double > coord = {0.0, 0.0}, tol = {1e-12, 1e10} ;
14 vector <int > fixed_nodes = fea_mesh.GetNodesByCoordinates (coord , tol) ;
15 vector <int > fixed_dof = fea_mesh.dof (fixed_nodes) ;
16
17 // Add boundary conditions to study:
18 vector <double > amplitude (fixed_dof.size() ,0.0) ; // Values equal to zero.
19 fea_study.AddBoundaryConditions (FEA:: DirichletBoundaryConditions (fixed_dof ,

amplitude , fea_mesh.n_dof)) ;
20
21 /*
22 Define a point load of (0, -0.5) at the point (nelx , 0.5* nely) and add to study:
23 */
24
25 Select dof using a box centered at coord of size tol:
26 coord = {1.0* nelx , 0.5* nely}, tol = {1e-12, 1e-12} ;
27 vector <int > load_node = fea_mesh.GetNodesByCoordinates (coord , tol) ;
28 vector <int > load_dof = fea_mesh.dof (load_node) ;
29
30 vector <double > load_val (load_node.size() * 2) ;
31 for (int i = 0 ; i < load_node.size() ; ++i) {

32

Figure 12: FEA and LSM meshing of design domain.

32 load_val [2*i] = 0.00 ; // load component in x direction.
33 load_val [2*i+1] = -0.5 ; // load component in y direction.
34 }
35
36 // Add point load to study and assemble load vector {f}:
37 FEA:: PointValues point_load (load_dof , load_val) ;
38 fea_study.AssembleF (point_load , false) ;

Lastly, the FEA solver settings (initial solution guess and convergence tolerance)
are defined as:

1 // Initialise guess solution for CG:
2 vector <double > u_guess (fea_mesh.n_dof , 0.0) ;
3
4 // Convergence tolerance:
5 double cg_tolerence = 1.0e-6 ;

Settings for the Sensitivity Analysis

The FEA::SensitivityAnalysis class is used to compute the sensitivity of com-
pliance with respect to movements of the structural boundary. In this example, it
suffices to declare one instance, which is done as:

1 FEA:: SensitivityAnalysis sens (fea_study) ;

Settings for the Level Set Method

Basic parameters width related to level set method are defined first. They include
move_limit defining that the level set boundary will move less than this value
between design iterations, and band_width for the width of the narrow band: the
area nearest the structural boundary which is re-initialized between iterations.

1 /*
2 Define LSM parameters:
3 */
4
5 double move_limit = 0.5 ; // Maximum displacement per iteration in units of

the mesh spacing.
6 double band_width = 6 ; // Width of the narrow band.
7 bool is_fixed_domain = false ; // Whether or not the domain boundary is fixed.

33

It should be noted that the holes class is declared, however, holes initiated are
inactive.

1 /*
2 Seed initial holes:
3 In this example , we create five horizontal rows , each row alternating between
4 four and five equally spaced holes , all of radius 5 units.
5 */
6
7 vector <LSM::Hole > holes ;
8
9 // First row with five holes:

10 // holes.push_back (LSM::Hole (16, 14, 5)) ;
11 // holes.push_back (LSM::Hole (48, 14, 5)) ;
12 // holes.push_back (LSM::Hole (80, 14, 5)) ;
13 // holes.push_back (LSM::Hole (112, 14, 5)) ;
14 // holes.push_back (LSM::Hole (144, 14, 5)) ;
15
16 // // Second row with four holes:
17 // holes.push_back (LSM::Hole (32, 27, 5)) ;
18 // holes.push_back (LSM::Hole (64, 27, 5)) ;
19 // holes.push_back (LSM::Hole (96, 27, 5)) ;
20 // holes.push_back (LSM::Hole (128, 27, 5)) ;
21
22 // // Third row with five holes:
23 // holes.push_back (LSM::Hole (16, 40, 5)) ;
24 // holes.push_back (LSM::Hole (48, 40, 5)) ;
25 // holes.push_back (LSM::Hole (80, 40, 5)) ;
26 // holes.push_back (LSM::Hole (112, 40, 5)) ;
27 // holes.push_back (LSM::Hole (144, 40, 5)) ;
28
29 // // Fourth row with four holes:
30 // holes.push_back (LSM::Hole (32, 53, 5)) ;
31 // holes.push_back (LSM::Hole (64, 53, 5)) ;
32 // holes.push_back (LSM::Hole (96, 53, 5)) ;
33 // holes.push_back (LSM::Hole (128, 53, 5)) ;
34
35 // // Fifth row with five holes:
36 // holes.push_back (LSM::Hole (16, 66, 5)) ;
37 // holes.push_back (LSM::Hole (48, 66, 5)) ;
38 // holes.push_back (LSM::Hole (80, 66, 5)) ;
39 // holes.push_back (LSM::Hole (112, 66, 5)) ;
40 // holes.push_back (LSM::Hole (144, 66, 5)) ;

Settings for the Optimization

Before solving the optimization problem, several parameters are set. max_iterations
limits the number of design iterations; max_area defines the constraint of finite el-
ements with area fractions, but it is ignored in the sensitivity analysis calculations;
max_diff specifies the change in objective function required to signify convergence;
lambdas are used to store weighting factors.

1 /*
2 Define parameters needed for optimization loop:
3 */
4

34

5 int max_iterations = 300 ; // maximum number of iterations.
6 double max_area = 0.5 ; // maximum material area.
7 double max_diff = 0.0001 ; // relative difference between iterations must be

less than this value to reach convergence.
8
9 /*

10 Lambda values for the optimiser:
11 These are reused , i.e. the solution from the current iteration is
12 used as an estimate for the next , hence we declare the vector
13 outside of the main loop.
14 */
15
16 vector <double > lambdas (2) ;

Level Set Topology Optimization Loop

An instance of an LSM::Mesh class is created and is given the same resolution as
the FEA mesh above. Hence, a level set array of (nelx+1)*(nely+1) grid points
are created. For each, the level set function is calculated as the Euclidean distance
to the nearest structural boundary using the reinitialize function. For nodes on
solid elements the sign is chosen to be negative, whereas for nodes on void elements
the sign is chosen to be positive. The boundary of the structure is to be stored in a
LSM::Boundary object.

1 /*
2 Create level set
3 */
4 // Initialise the level set mesh (same resolution as the FE mesh):
5 LSM::Mesh lsm_mesh (nelx , nely , false) ;
6
7 double mesh_area = lsm_mesh.width * lsm_mesh.height ;
8
9 // Initialise the level set object (from the hole vector):

10 LSM:: LevelSet level_set (lsm_mesh , holes , move_limit , band_width , is_fixed_domain)
;

11
12 // Reinitialise the level set to a signed distance function:
13 level_set.reinitialise () ;
14
15 // Initialise the boundary object :
16 LSM:: Boundary boundary (level_set) ;
17 // Initialise random number generator:
18 LSM:: MersenneTwister rng ;
19
20 /*
21 Optimization:
22 */
23
24 // Declare parameters that will change within the optimization loop:
25 unsigned int n_reinit = 0 ; // num cycles since signed dist

reinitialisation.
26 double time = 0 ; // running time.
27 vector <double > times , compliances , areas ; // time , compliance and area

measurements.
28 int n_iterations = 0 ; // iteration counter

35

29 vector <double > objective_values ; // vector to save objective history
30 double relative_difference = 1.0 ; // convergence criteria variable ,
31
32 // Initialise io object:
33 LSM:: InputOutput io ;

Afterwards, the initial parameters for the hole creation algorithm are defined.
holeCFL is the CFL condition and lBand is the band width for the second level
set function. h_bar is the artificial height of the second level set function, which
is further determined. h_flag is a variable implying whether hole should be in-
serted or not. isHole determines whether hole creation function is active nor not.
newHoleAreaLimit is a threshold value for warning of moving too much material
by the hole insertion process and initialised.

1 // --
2 // Define/Initialise parameters for hole insertion subroutine
3 vector <double > h_index(lsm_mesh.nNodes);
4 vector <double > h_lsf(lsm_mesh.nNodes);
5 vector <bool > h_elem(lsm_mesh.nElements);
6 vector <M2DO_LSM ::h_Node > h_Nsens(lsm_mesh.nNodes);
7 vector <M2DO_LSM ::h_Node > h_Nsens_Temp(lsm_mesh.nNodes);
8 vector <M2DO_LSM ::h_Element > h_Esens(lsm_mesh.nElements);
9 int h_count = 0;

10 double holeCFL = 0.15;
11 double lBand = 2.0;
12 double h; // Size of level set element max (width , height)
13 double h_bar; // artifitial height for setting secondary level set function
14 bool h_flag = false; //
15 bool isHole = true; // Is hole inseration function active?
16 double newHoleAreaLimit = 0.03;
17 //
18 // Assign desired artificial height
19 //
20 h = (lsm_mesh.width/nelx > lsm_mesh.height/nely) ? (lsm_mesh.width/nelx) : (

lsm_mesh.height/nely);
21 h_bar = h;

The boundary of the second level set function is to be defined as:
1 // LSM:: Boundary_hole boundary_hole(levelSet) ;
2 LSM:: Boundary boundary_hole(level_set) ;

In the next part of the program, the optimization loop that starts, and it is termi-
nated with a convergence check when satisfactory solution is obtained. Iterations are
counted by variable n_iterations and continue for a maximum of max_iterations.
Inside the optimization loop, the boundary of the structure defined by iso-contour
(2D) or surface (3D), e.g. zero level set, is discretized by finding intersection points
on mesh grid with the use of marching square algorithm. The area fraction of each
level set element is then calculated. The area fractions of elements are assigned to the
finite elements. The area fraction fixed grid finite element method is called to con-
duct finite element analysis through assembling global stiffness matrix and solving
finite element equation. The shape sensitivity of the compliance at each gauss points

36

in finite element is calculated. Shape sensitivities are then calculated for boundary
points by extrapolating or interpolating from the information at gauss points with
the use of the weighted least square method. The volume constraint is also imposed
at each iteration. By completing these necessary inputs, the Lagrangian Multiplier
method is applied to solve the optimization problem.

1 while (n_iterations < max_iterations) {
2
3 ++ n_iterations ;
4
5 // Perform boundary discretisation:
6 boundary.discretise (false , lambdas.size()) ;
7
8 // Compute element area fractions:
9 boundary.computeAreaFractions () ;

10
11 // Assign area fractions:
12 for (int i = 0 ; i < fea_mesh.solid_elements.size() ; i++) {
13
14 if (lsm_mesh.elements[i].area < 1e-3) {
15 fea_mesh.solid_elements[i]. area_fraction = 1e-3 ;
16 }
17
18 else {
19 fea_mesh.solid_elements[i]. area_fraction = lsm_mesh.elements[i].area ;
20 }
21
22 }
23
24 // Assemble stiffness matrix [K] using area fraction method:
25 fea_study.AssembleKWithAreaFractions (false) ;
26
27 // Solve equation using conjugant gradient (cg) method:
28 fea_study.SolveWithCG ();
29
30 // Compute compliance sensitivities (stress*strain) at the Gauss points:
31 sens.ComputeComplianceSensitivities (false) ;
32
33 // Compute compliance sensitivities at boundary points:
34 for (int i = 0 ; i < boundary.points.size() ; i++) {
35
36 vector <double > boundary_point (2, 0.0) ;
37 boundary_point [0] = boundary.points[i].coord.x ;
38 boundary_point [1] = boundary.points[i].coord.y ;
39
40 // Interpolate Gauss point sensitivities by least squares
41 sens.ComputeBoundarySensitivities (boundary_point);
42
43 // Assign sensitivities
44 boundary.points[i]. sensitivities [0] = -sens.boundary_sensitivities[i];
45 boundary.points[i]. sensitivities [1] = -1;
46
47 }
48
49 // clearing sens.boundarysens vector
50 sens.boundary_sensitivities.clear () ;
51
52 // Time step associated with the iteration

37

53 double time_step ;
54
55 // Constraint distance vector
56 vector <double > constraint_distances ;
57
58 // Push current distance from constraint violation into vector
59 constraint_distances.push_back (mesh_area * max_area - boundary.area) ;
60
61 /* Initialise the optimisation object
62
63 The Optimise class is a lightweight object so there is no cost for
64 reinitialising at every iteration. A smart compiler will optimise
65 this anyway , i.e. the same memory space will be reused. It is better
66 to place objects in the correct scope in order to aid readability
67 and to avoid unintended name clashes , etc.
68 */
69
70 LSM:: Optimise optimise (boundary.points , time_step , move_limit) ;
71
72 // set up required parameters
73 optimise.length_x = lsm_mesh.width ;
74 optimise.length_y = lsm_mesh.height ;
75 optimise.boundary_area = boundary.area ; // area of structure
76 optimise.mesh_area = mesh_area ; // area of the entire mesh
77 optimise.max_area = max_area ; // maximum area , i.e. area constraint
78
79 // Perform the optimisation
80 optimise.Solve_With_NewtonRaphson () ;
81
82 optimise.get_lambdas(lambdas);
83 }

After optimizing the primary level set function in each step, the second level set
function needs to be updated to determine whether and where new holes should be
inserted. If so, the primary level set function should be modified with new holes.
Such process can be achieved through following steps:

1. initialise the nodes values of the second level set function as an artificial height,
h_bar, in terms of element length, h;

1 //
2 // Step 1.
3 //
4
5 h_count = hole_map(lsm_mesh , level_set , h, lBand , h_index , h_elem);

2. determine area/nodes where new holes can be inserted;
1 //
2 // Step 2. Initialise the secondary level set function after inserting new

holes
3 //
4 h_lsf.resize(lsm_mesh.nNodes); fill(h_lsf.begin(), h_lsf.end(), h_bar);//}
5 get_h_lsf(lsm_mesh.nNodes , h_index , h_Nsens , lambdas , h_lsf);
6 h_flag = false;

38

3. calculate the corresponding nodal sensitivities needs to be calculated using
least-squares method;

1
2 // 3.1 Extrapolate nodal sensitvities from sensitivites for gauss points
3 for (int inode = 0; inode < lsm_mesh.nNodes; inode++) {
4 vector <double > nPoint (2, 0);
5 nPoint [0] = lsm_mesh.nodes[inode].coord.x;
6 nPoint [1] = lsm_mesh.nodes[inode].coord.y;
7
8 // Interpolate Node Point sensitivities by least squares.
9 sens.ComputeBoundarySensitivities(nPoint) ;

10
11 // Assign sensitivities.
12 h_Nsens_Temp[inode]. sensitivities.resize (2);
13 fill(h_Nsens_Temp[inode]. sensitivities.begin (), h_Nsens_Temp[inode].

sensitivities.end(), 0.0);
14
15 h_Nsens_Temp[inode]. sensitivities [0] = -sens.boundary_sensitivities[inode]

;
16 h_Nsens_Temp[inode]. sensitivities [1] = -1 ;
17 }
18 // clearing sens.boundarysens vector.
19 sens.boundary_sensitivities.clear() ;
20
21 // 3.2 Calculate element sensitivities
22 for (int iel = 0; iel < lsm_mesh.nElements; iel++) {
23 h_Esens[iel]. sensitivities.resize (2);
24 fill(h_Esens[iel]. sensitivities.begin(), h_Esens[iel]. sensitivities.end(),

0.0);
25
26 for (int ind = 0; ind < 4; ind++) {
27 int inode;
28 inode = lsm_mesh.elements[iel].nodes[ind];
29 h_Esens[iel]. sensitivities [0] += 0.25 * h_Nsens_Temp[inode].

sensitivities [0];
30 h_Esens[iel]. sensitivities [1] += 0.25 * h_Nsens_Temp[inode].

sensitivities [1];
31 }
32
33 }
34
35 // 3.3 Update nodal sensitivities
36 // clear nodal sensitivity value
37 for (int inode = 0; inode < lsm_mesh.nNodes; inode++) {
38 h_Nsens[inode]. sensitivities.resize (2);
39 fill(h_Nsens[inode]. sensitivities.begin (), h_Nsens[inode]. sensitivities.end

(), 0.0);
40 }
41
42 // re -assign nodal sensitivity value based on calculatd element

sensitivities
43 for (int iel = 0; iel < lsm_mesh.nElements; iel++) {
44 for (int ind = 0; ind < 4; ind++) {
45 int inode;
46 inode = lsm_mesh.elements[iel].nodes[ind];
47 h_Nsens[inode]. sensitivities [0] += 0.25 * h_Esens[iel]. sensitivities [0];
48 h_Nsens[inode]. sensitivities [1] += 0.25 * h_Esens[iel]. sensitivities [1];
49 }

39

50 }

4. update the secondary level set function for hole insertable nodes to check
whether new hole should be inserted or not;

1 get_h_lsf(lsm_mesh.nNodes , h_index , h_Nsens , lambdas , h_lsf);
2 //
3 // Step 5. Check whether new holes should be inserted
4 //
5 int inserted_hole_nodes = 0;
6 for (int inode = 0; inode < lsm_mesh.nNodes; inode++) {
7 if ((h_index[inode] ==1) && (h_lsf[inode] < 0)) {
8 if (! h_flag) {
9 cout << "\n\n--\n";

10 cout << " Hole will be inserted at ";
11 }
12 h_flag = true;
13 inserted_hole_nodes ++;
14 //cout << "\n" << inode << "\t" << h_lsf[inode] << "\t" <<

level_set.signedDistance[inode];
15 }
16 }
17 // counting hole_area secondary
18 double area_h_lsf , area_lsf;
19 area_h_lsf = LSM:: Boundary_hole(level_set , &h_lsf).computeAreaFractions ()

;
20 area_lsf = LSM:: Boundary_hole(level_set , &level_set.signedDistance).

computeAreaFractions ();
21
22 printf("\nThe area fraction corresponding to lsf and h_lsf are: %8.2f

%8.2f %8.2f\n", boundary.area , area_lsf , area_h_lsf) ;
23
24 //cout << "\n\nNumber of nodes to be set as new hole nodes: " <<

inserted_hole_nodes << endl;

5. copy the secondary level set function to the primary level set function if holes
need to be inserted;

1 //
2 // Step 6. Copy values of secondary level set function to primaray level

set function
3 //
4 // io.saveLevelSetVTK (9000, level_set) ;
5
6 if (h_flag) {
7
8 //
9 // 6.1 Check whether new holes’ area exceeds a certain threshold

10 //
11
12 double hole_areafraction = (mesh_area - area_h_lsf)/area_lsf;
13 // Find minimum of h_lsf
14 double temp_min_h_lsf = 1.0;
15 if (hole_areafraction > newHoleAreaLimit) {
16 for (int inode = 0; inode < lsm_mesh.nNodes; inode ++) {
17 temp_min_h_lsf = (temp_min_h_lsf < h_lsf[inode]) ?

temp_min_h_lsf : h_lsf[inode];
18 }

40

19 }
20 while (hole_areafraction > newHoleAreaLimit) {
21
22 cout << "\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
23 cout << " Too much material is removed. \n";
24 cout << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" << endl;
25
26 // move up h_lsf untill the limit of the area of new holes to be

inserted meeting the requirement
27 for (int inode = 0; inode < lsm_mesh.nNodes; inode ++) {
28 h_lsf[inode] = h_lsf[inode] - 0.005* temp_min_h_lsf;
29 }
30 area_h_lsf = LSM:: Boundary_hole(level_set , &h_lsf).

computeAreaFractions ();
31 hole_areafraction = (mesh_area - area_h_lsf)/area_lsf;
32 }
33
34 //
35 // 6.2 Update primary level set function to insert new holes
36 //
37 signedDistance_temp.clear(); double min_h_lsf = 1.0, min_lsf = 1.0;
38 for (int inode = 0; inode < lsm_mesh.nNodes; inode ++) {
39 // signedDistance_temp[inode] = level_set.signedDistance[inode];
40 if ((h_index[inode] ==1) && (hole_areafraction >1e-3)) {
41 //if (h_lsf[inode] < level_set.signedDistance[inode]) {
42 if ((h_lsf[inode]<=h_bar) && (h_lsf[inode] < level_set.

signedDistance[inode])) {
43 level_set.signedDistance[inode] = h_lsf[inode];
44 }
45 }
46 signedDistance_temp[inode] = level_set.signedDistance[inode];
47 min_h_lsf = (min_h_lsf < h_lsf[inode]) ? min_h_lsf : h_lsf[inode

];
48 min_lsf = (min_lsf < level_set.signedDistance[inode]) ? min_lsf :

level_set.signedDistance[inode];
49 }
50 cout <<"\n\nMininal primary and secondary LSF: " << min_h_lsf << "\t"

<< min_lsf << endl;
51 }

6. stretch this updated primary level set function using Fast Marching Method
after inserting new holes.

1 //
2 // Step 7. Use fast marching method to re-initialise signed distance

function
3 //
4 if (h_flag) {
5
6 // for (int inode = 0; inode < lsm_mesh.nNodes; inode++) {
7 // level_set.signedDistance[inode] = h_lsf[inode];
8 // }
9 // cout << "\nThe area fraction corresponding to h_lsf is [new] : "

<< LSM:: Boundary_hole(level_set ,& h_lsf).computeAreaFractions () <<
endl;

10 // io.savelevel_setVTK (9001 , level_set) ;
11
12 // for (int inode = 0; inode < lsm_mesh.nNodes; inode++) {
13 // level_set.signedDistance[inode] = signedDistance_temp[inode];

41

14 // }
15 // io.savelevel_setVTK (9002 , level_set) ;
16
17 // // boundary_hole2.computeAreaFractions () ;
18 // cout << "\nThe area fraction corresponding to lsf before

stretching is: " << LSM:: Boundary_hole(level_set ,& level_set.
signedDistance).computeAreaFractions () << endl;

19
20 M2DO_LSM :: FastMarchingMethod fmm(lsm_mesh , false);
21 fmm.march(level_set.signedDistance);
22
23 // io.savelevel_setVTK (9003 , level_set) ;
24
25 // cout << "\nhe area fraction corresponding to lsf after stretching

is: " << LSM:: Boundary_hole(level_set ,& level_set.signedDistance).
computeAreaFractions () << endl;

26
27 }

In order to update the primary level set function, velocity values are required
at all grid nodes. In practice, velocities are only extended to nodes in narrow
band. Similarly, gradients are computed. Hence, the level set function is able to be
updated.

1 // Extend boundary point velocities to all narrow band nodes
2 level_set.computeVelocities (boundary.points , time_step , 0, rng) ;
3
4 // Compute gradient of the signed distance function within the narrow band
5 level_set.computeGradients () ;
6
7 // Update the level set function
8 bool is_reinitialised = level_set.update (time_step) ;

As the level-function is only updated for nodes in the narrow band for efficiency,
the property of signed distance is not maintained for the rest nodes. Thus, it is
important to ensure the level set function to preserve the property of signed distance
for the accuracy in solving the evolution equation. However, it may be necessary
to reinitialise the level set function too often. Currently, reinitialization at every 20
iterations is a default. The n_reinit variable is used to count iteration. When it is
reached, the reinitialization function is called to solve the Eikonal equation.

1 // Update the level set function
2 bool is_reinitialised = level_set.update (time_step) ;
3
4 // Reinitialise the signed distance function , if necessary
5 if (! is_reinitialised) {
6 // Reinitialise at least every 20 iterations
7 if (n_reinit == 20) {
8 level_set.reinitialise () ;
9 n_reinit = 0 ;

10 }
11
12 } else n_reinit = 0 ;
13
14 // Increment the number of steps since reinitialisation

42

15 n_reinit ++ ;

A convergence check may terminate the algorithm before allowed maximum itera-
tions are reached. The convergence check is not performed for the first five iterations
of the algorithm. After these first five iterations, the optimization terminates if the
previous five objective function values are all within a tolerance of 1 × 10−3 com-
paring with the current objective value and the volume is within 1 × 10−4 of the
required value max_area.

1 // Converence criterion [Dunning_11_FINAL]:
2 // find the max relative distance over the past five iterations:
3 objective_values.push_back (sens.objective) ;
4 double objective_value_k , objective_value_m ;
5
6 if (n_iterations > 5) {
7
8 objective_value_k = sens.objective ;
9 relative_difference = 0.0 ;

10
11 for (int i = 1 ; i <= 5 ; i++) {
12 objective_value_m = objective_values[n_iterations - i - 1] ;
13 relative_difference = max(relative_difference , abs((objective_value_k -

objective_value_m)/objective_value_k)) ;
14 }
15
16 }
17
18 // Check if convergence has been met:
19 if ((relative_difference < max_diff) & (area < 1.001 * max_area)) break;

Outputs

The code allows to yield different results, namely, area fraction, signed distance,
objective function value and constraint value, from the calculation, into various
formats of files. Basically, the initial and final designs and the convergence history
of objective function and constraint values are output, while the users are given the
option to output each step’s results during iterative calculations. The level set and
area fraction results at each iteration can be written out into vtk files. Boundary
segments can also be written to a text file.

1 // Print statistics
2 printf ("%8.1f %12.4f %10.4f\n", double(n_iterations), sens.objective , area) ;
3
4 // Print statistics to .txt file
5 history_file.open ("results/history/history.txt", ios_base ::app) ;
6 history_file << n_iterations << "\t" << sens.objective << "\t" << area << "\n" ;
7 history_file.close () ;
8
9 // Write level set and area fractions to .vtk file

10 io.saveLevelSetVTK (n_iterations , level_set , false , false , "results/level_set") ;
11 io.saveAreaFractionsVTK (n_iterations , lsm_mesh , "results/area_fractions") ;
12
13 // Write level set , area fractions , and boundary segments to .txt file:

43

(a) Initial design (b) Final solution

Figure 13: Initial design and optimal solution for the cantilever example.

Figure 14: Convergence history of compliance value and area fraction for the can-
tilever example.

14 io.saveBoundarySegmentsTXT (n_iterations , boundary , "results/boundary_segments") ;

Results

For a given initial design as shown in Figure 13a, the structure converges to an
optimal solution as given in Figure 13b after 233 iterations with a compliance value
of 15.1 by using default parameters and convergence criterion given in the source
file. The convergence history is illustrated in Figure 14.

44

Tutorial 5: MBB Beam using the
Hole Creation Algorithm

This tutorial is considered an extension of Tutorial 4, so more considerations on the
manipulation of boundary conditions and loads can be explored. Reader is recom-
mended to first understand the previous tutorial before advancing through present
example. The resources for this tutorial can be found in the folder hole_creation
in OpenLSTO_v2/projects directory (same considered in Tutorial 4).

The code can be easily modified to consider different boundary conditions, loads
and different initial design. A simple extension to find optimal design for a simply
supported beam or MBB beam as shown in Figure 15 is demonstrated here. Only
half of the beam needs to be solved due to the symmetry of load and boundary
conditions about the vertical axis. The right half (the shaded area in the figure) is
considered in this example. The configuration of the half beam is set the same as the
previous cantilever beam. Hence, it only needs to change the boundary conditions
and loads. The horizontal translation of the left edge of the half beam need to be
restricted and the vertical motion of lower right-hand conner is not allowed. These
boundary conditions are realized as follows:

1 // Example 2: half of simply supported beam or MBB beam
2
3 // Left boundary condition
4 vector <double > coord_left = {0.0, 0.0}, tol_left = {1e-12, 1e10} ;
5 vector <int > fixed_nodes_left = fea_mesh.GetNodesByCoordinates (coord_left ,

tol_left) ;
6 vector <int > fixed_condition_left = {0} ; // set fixed in only the x direction.
7 vector <int > fixed_dof_left = fea_mesh.dof (fixed_nodes_left ,

fixed_condition_left) ;
8
9 // Right boundary condition

10 vector <double > coord_right = {nelx , 0.0}, tol_right = {1e-12, 1e-12} ;
11 vector <int > fixed_nodes_right = fea_mesh.GetNodesByCoordinates(coord_right ,

tol_right) ;
12 vector <int > fixed_condition_right = {1} ; // set fixed in only the y direction.
13 vector <int > fixed_dof_right = fea_mesh.dof(fixed_nodes_right ,

fixed_condition_right) ;
14
15 // Combine dofs into a single vector
16 vector <int > fixed_dof ;
17 fixed_dof.reserve(fixed_dof_left.size() + fixed_dof_right.size()) ;

45

Figure 15: Configuration of the MBB beam.

(a) Initial design (b) Final solution

Figure 16: Initial design and optimal solution for the MBB example.

18 fixed_dof.insert(fixed_dof.end(), fixed_dof_left.begin (), fixed_dof_left.end()) ;
19 fixed_dof.insert(fixed_dof.end(), fixed_dof_right.begin(), fixed_dof_right.end())

;

To apply the vertical point load for the node at the upper left-hand conner, corre-
sponding node and related degree of freedom need to be selected and the magnitude
of the load is assigned.

1 // Example 2: half of simply supported beam or MBB beam
2
3 vector <double > coord = {0.0, nely}, tol = {1e-12, 1e-12} ;
4 vector <int > load_node = fea_mesh.GetNodesByCoordinates (coord , tol) ;
5 vector <int > load_condition = {1} ; // apply load in only the y direction.
6 vector <int > load_dof = fea_mesh.dof (load_node , load_condition) ;
7
8 vector <double > load_val (load_node.size()) ;
9 for (int i = 0 ; i < load_node.size() ; ++i) {

10 load_val[i] = -10.0; //load component in y direction
11 }

After these setting, the optimization for MBB can be solved. For the given initial
design as shown in Figure 16a, the structure converges to an optimal solution as given
in Figure 16b after 300 iterations with a compliance value of 18.9 by using default
parameters and convergence criterion given in the source file. The convergence
history is illustrated in Figure 17.

46

Figure 17: Convergence history of compliance value and area fraction for the MBB
example.

47

Tutorial 6: 3D Level Set Topology
Optimization

Goals

Upon completing this tutorial, the user will be familiar with performing a topology
optimization for a 3D compliance minimization problem. The outline and functions
used in this tutorial are very similar to the 2D compliance minimization and stress
minimization problems, previously presented in tutorials 1 to 3.

Resources

The resources for this tutorial are found in the folder 3d in OpenLSTO_v2/projects
directory. The compliance minimization example needs to be compiled using make comp_min

respectively; and must be executed using the command ./bin/a.out.

Tutorial

The following tutorial will walk you through the steps required to solve a compliance
minimization problem (comp_min.cpp) using OpenLSTO in 3D, subject to a volume
constraint of 30%. It is assumed that you have already obtained the OpenLSTO
code. If not, please refer to Download. It is also assumed that you are familiar with
the compliance minimization code, introduced in Tutorial 1: Compliance Minimiza-
tion Problem for 2D.

A schematic of the problem is shown in Figure 18. The different blocks of code
that solve this optimization problem are introduced below.

Setting Up the Finite Element Analysis

The following code snippet is used to create a mesh of size 40× 20× 20:
1
2 // Dimensionality of problem:

48

Figure 18: A schematic of the 3D compliance minimization problem. The structure
is clamped on the right side and a distributed force is applied on the bottom-left
side.

3 const int spacedim = 3 ;
4
5 // FEA & level set mesh parameters:
6 const unsigned int nelx = 40, nely = 20, nelz = 20;
7
8 // Create an FEA mesh object.
9 FEA::Mesh fea_mesh (spacedim) ;

10
11 // Mesh a hyper rectangle.
12 MatrixXd fea_box (8, 3) ;
13
14 fea_box << 0.0, 0.0, 0.0,
15 nelx , 0.0 , 0.0,
16 nelx , nely , 0.0,
17 0.0, nely ,0.0 ,
18 0.0, 0.0 ,nelz ,
19 nelx , 0.0 ,nelz ,
20 nelx , nely ,nelz ,
21 0.0, nely ,nelz;

It is clear that, as an extension of the 2D mesh creation code introduced in Tutorial
1: Compliance Minimization Problem for 2D, spacedim refers to the number of
dimensions of a 3D geometry and fea_box receives 8 coordinates corresponding to
the 8 vertices of the cuboid schematized in Figure 18.

After creating the mesh, degrees of freedom are assigned to each node as follows:
1 vector <int > nel = {nelx , nely , nelz} ;
2 int element_order = 3 ;
3 fea_mesh.MeshSolidHyperRectangle (nel , fea_box , element_order , false) ;
4 fea_mesh.is_structured = true ;
5 fea_mesh.AssignDof () ;

The geometry subject to the level set optimization has the following properties:

49

• Young’s modulus: 1.0;

• Poisson’s ratio: 0.3;

• density: 1.0.

and the code that adds these material properties to the analysis is written as follows:
1 // Add material properties:
2 // SolidMaterial (<geometry dimension of structure >, <Young’s modulus >, <Poisson ’s

ratio >, <density >)
3 fea_mesh.solid_materials.push_back (FEA:: SolidMaterial (spacedim , 1.0, 0.3, 1.0)) ;

Next, we will define a study (analysis) and apply boundary conditions (clamped
nodes located on plane x = 0):

1 // Define study
2 FEA:: StationaryStudy fea_study (fea_mesh) ;
3 // Fix nodes
4 vector <int > fixed_nodes = fea_mesh.GetNodesByCoordinates ({0.0 , 0.0 , 0.0 }, {1e

-12, 1e9, 1e9}) ;
5 // Fix DOFs
6 vector <int > fixed_dof = fea_mesh.dof (fixed_nodes) ;
7 // Define Amplitude
8 vector <double > amplitude (fixed_dof.size() ,0.0) ; // Values equal to zero.
9 // Add boundary conditions

10 fea_study.AddBoundaryConditions (FEA:: DirichletBoundaryConditions (fixed_dof ,
amplitude , fea_mesh.n_dof)) ;

A distributed load, as described in Figure 18, is applied as follows:
1 // Select Nodes
2 vector <int > load_node = fea_mesh.GetNodesByCoordinates ({nelx , 0.0*nely ,0.0* nelz},

{1.0e-12, 1.0e9, 1.e -12}) ;
3 vector <int > load_dof = fea_mesh.dof (load_node) ;
4
5 // Select DOFs
6 vector <double > load_val (load_node.size() * spacedim) ;
7
8 // Apply loads on nodes
9 for (int i = 0 ; i < load_node.size() ; ++i) {

10
11 load_val[spacedim*i] = 0.0 ;
12 load_val[spacedim*i+1] = 0.0 ;
13 load_val[spacedim*i+2] = -1.0 ;
14 }
15
16 // Assemble load vector
17 FEA:: PointValues point_load (load_dof , load_val) ;
18 fea_study.AssembleF (point_load , false) ;
19
20 // Create sensitivity analysis instance.
21 FEA:: SensitivityAnalysis sens(fea_study) ;

Setting Up the Level Set Analysis

The following bits of code are used to create a level set mesh (which is of the same
size as the finite element mesh) and a boundary of a box:

50

1 // Create an object of the levelset class
2 LevelSet3D level_set_3d;
3
4 // Declare box dimensions and initialize the box
5 std::vector <double > LS2FEmap (3,1);
6
7 uint box_x = nelx*LS2FEmap [0];
8 uint box_y = nely*LS2FEmap [1];
9 uint box_z = nelz*LS2FEmap [2];

10
11 level_set_3d.SetBoxDimensions(box_x ,box_y ,box_z);// Set up dimensions
12
13 // Gotta define the pointers to phi and grid_vel in the main , otherwise it gets

deleted!
14 level_set_3d.phi = new mp4Vector[level_set_3d.num_grid_pts];
15
16 // level_set_3d.holes.push_back ({ 0.0* box_x , 0.5* box_y , 0.5* box_z , 0.4* box_y });
17 level_set_3d.MakeBox () ;

Handling Sensitivity Data

The class SensitivityData is used to transfer the sensitivity and optimization
informations, such as volume constraint, move limit, optimum velocities and etc.,
between finite element analysis and level set classes. It is set up using the following
code:

1 // Create a sensitivity object
2 SensitivityData SensData;
3
4 double MaxVol = 30.0; // in percentage
5 SensData.MaxVol = MaxVol;
6
7 std::vector <double > UB(2,0);
8 std::vector <double > LB(2,0);
9

10 // pass mesh dimensions to sensitivity data
11 SensData.nx = box_x;
12 SensData.ny = box_y;
13 SensData.nz = box_z;
14
15 SensData.LS2FEmap = LS2FEmap;
16
17 SensData.LB = LB;
18 SensData.UB = UB;
19
20 double move_limit = 0.25;
21 SensData.move_limit = move_limit;

The optimization iterations update the level set until the maximum allowed
iterations or the convergence criteria is satisfied. The code shown in the following
paragraphs is used to do the optimization:

After the discretization of the level set, boundary points and the volume fractions
are computed from the level set using the following code:

1 // Discretize boundary using Marching Cubes

51

2 if(n_iterations > 1) delete [] level_set_3d.triangle_array;
3 level_set_3d.MarchingCubesWrapper ();
4
5 // Pass info to SensData
6 SensData.bpointsize = level_set_3d.num_boundary_pts;
7 SensData.bPoints = level_set_3d.boundary_pts_one_vector;
8 SensData.pointAreas = level_set_3d.boundary_areas;
9 SensData.bpointsize = level_set_3d.num_triangles;

10 SensData.iter = n_iterations;
11
12 // Set -up narrow band
13 level_set_3d.SetupNarrowBand ();
14
15
16 // Calculate volume fractions
17 level_set_3d.CalculateVolumeFractions ();
18
19 SensData.volumeFractions = level_set_3d.volumefraction_vector;

The finite element analysis routine uses the volume fraction information to calculate
the deflections and sensitivities as follows:

1 // Assign area fractions.
2 for (unsigned int i=0 ; i< fea_mesh.solid_elements.size() ; i++)
3 {
4 if (SensData.volumeFractions[i] < 1e-3) fea_mesh.solid_elements[i]. area_fraction =

1e-3 ;
5 else fea_mesh.solid_elements[i]. area_fraction = SensData.volumeFractions[i] ;
6 }
7
8 // Assemble stiffness matrix [K] using area fraction method:
9 fea_study.AssembleKWithAreaFractions (false) ;

10
11 // Solve equation:
12 fea_study.SolveWithCG () ;
13
14 SensData.compliance = fea_study.u.dot(fea_study.f);
15
16 // Compute compliance sensitivities (stress*strain) at the Gauss points.
17 sens.ComputeComplianceSensitivities(false) ;

After calculating the sensitivities, the least-squares interpolation scheme can be
used to compute sensitivity at the boundary points and these sensitivities are passed
on to the sensitivity object SensData as described below:

1 for (int i=0 ; i < SensData.bpointsize ; i++)
2 {
3 // current boundary point
4 std::vector <double > boundary_point (3);
5 boundary_point [0] = SensData.bPoints [3*i];
6 boundary_point [1] = SensData.bPoints [3*i+1];
7 boundary_point [2] = SensData.bPoints [3*i+2];
8
9 // compute boundary sensitivity at this point

10 sens.ComputeBoundarySensitivities(boundary_point) ;
11
12 // Assign sensitivities.
13 SensData.bsens[i] = -sens.boundary_sensitivities[i] ;
14 SensData.vsens[i] = -1 ;

52

15
16 // assign large values to sensitivities along the boundary where load is applied
17 if(boundary_point [0] >= nelx - 2 && boundary_point [2] <= 2) SensData.bsens[i] =

1.0e5 ;
18 }

The sensitivity information is used to optimize the boundary velocities. The opti-
mum velocities are then assigned to the level_set_3d object.

1 // Optimize boundary point movement
2 PerformOptimization(SensData);
3
4 // Resize and assign optimum velocities
5 level_set_3d.opt_vel.resize(level_set_3d.num_boundary_pts);
6
7 level_set_3d.opt_vel = SensData.opt_vel_nlopt;

The level set is updated using the optimized velocities. First, the boundary
velocities are extrapolated to the grid points. Next the fast marching method (FMM)
is used to update the level set. These tasks are coded as follows:

1 // Extrapolate velocities
2 level_set_3d.ExtrapolateVelocities ();
3
4 // Extend velocities using fast marching method
5 // FMM inside ...
6 level_set_3d.indices_considered = level_set_3d.indices_considered_inside;
7 level_set_3d.FastMarchingMethod ();
8
9 // FMM outside ...

10 for(int i = 0; i < level_set_3d.num_grid_pts; i++) level_set_3d.phi_temp[i] = -
level_set_3d.phi_temp[i]; // flip sign

11 level_set_3d.indices_considered = level_set_3d.indices_considered_outside;
12 level_set_3d.FastMarchingMethod ();
13 for(int i = 0; i < level_set_3d.num_grid_pts; i++) level_set_3d.phi_temp[i] = -

level_set_3d.phi_temp[i]; // flip sign
14
15 // Advect
16 level_set_3d.Advect ();

Output

The output of the code is a stl file, which can be visualized using ParaView (Figure
19). The following code creates the stl file:

1 // write to stl
2 int box_smooth = 1;
3 level_set_3d.WriteSTL(box_smooth);

53

(a) (b)

Figure 19: Optimized design for the cantilever example.

54

